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Abstract. This report describes a general class of designs for a Sparse Distributed Memory. I

show that Kanerva's original design and the selected-coordinate design, described in a previous

report, are related, and that there is a series of possible intermediate designs between those two

designs. In each such design the set of addresses that acdvate a memory location is a sphere in the

address space. We can also have hybrid designs, in which the memory locations may be a mixture

of those found in the other designs. In some applications the bits in the read and write addresses

that will actually be used might be mosdy zeros; that is, the addresses might lie on or near a

hyperplane in the address space. I describe a hyperplane design, which is adapted to this silaiadon,

and I compare it to an adaptation of Kanerva's design. To study the performance of these designs,

I compute the expected number of memory locations activated by both of two addresses. The

hardware embodiments for the selected-coordinate design, described in the previous report, can be

modified for the various designs in this report. More generally, if the addresses are not distributed

uniformly in the address space, it may be possible to define the memory locations in a way that is

better adapted to the actual distribution of the addresses. These designs are the subject of a recent

patent application.

Work reported herein was supported in part by Cooperative Agreement NCC 2-408 and NCC 2-

387 between the National Aeronautics and Space Administration (NASA) and the Universities

Space Research Association CUSRA).





A CLASS OF DESIGNS FOR A SPARSE DISTRIBUTED MEMORY

INTRODUCTION

In a previous report (Jaeckel, 1989), I described a new

design for a Sparse Distributed Memory, called the selected-

coordinate design, and I compared it to Kanerva's (t988) original

design. In this report I will define a more general class of

possible designs, which includes both of the above designs.

Since I will draw upon the ideas and the terminology found in the

earlier report, this report may be viewed as a sequel to it.

The designs described in this report are like Kanerva's

design in that they consist of a large number of memory

locations, called hard locations, each of which may be activated

by many different addresses in a very large address space. The

difference between these designs is in how the set of addresses

that activate a particular hard location is defined. Other

aspects of these designs, such as the counters at the hard

locations and the method of storing and retrieving data in the

memory, are the same as in Kanerva's design.

Let the address space S be the set of all n-dimensional

binary vectors. S is the set of all possible read and write

addresses. In any of the designs described in this report, a

memory location can be described or represented by giving the set
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of read or write addresses that would activate it. Conversely,

for each possible read or write address, there is a corresponding

subset of memory locations, consisting of those locations that

would be activated by that address.

In Kauerva's design, a memory location is activated by any

read or write address that is within a fixed _amming distance of

the address of the memory location. In the selected-coordinate

design, each memory location is defined by specifying ten (or

some other number of) selected coordi,ates (bit positions in the

address vectors) and a set of corresponding assig,ed values,

consisting of one bit for each selected coordinate. A memory

location is activated by an address if, for all of the location's

selected coordinates, the corresponding bits in the address

vector match the respective assigned values, regardless of the

other bits in the address vector.

In this report I will show that Kanerva's original design

and the selected-coordinate design are related, and that there is

a series of possible designs intermediate between the two. In

the selected-coordinate design and in each such i,termediate

desigu, the set of addresses that activate a memory location is a

sphere in S, the address space. Mowever, the center of the

sphere is not a point in S, as in Kanerva's design; it is a

point in the n-dimensional vector space Z in which S is

embedded.

For each q < n, and for a given radius for the spheres,

there is an intermediate design. Each memory location in such an

intermediate design is defined by specifying a set of q
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selected coordinates and corresponding assigned values, as in the

selected-coordinate design; these determine the center of the

sphere of addresses that would activate the location, h common

radius is chosen for the spheres so that each memory location is

activated by a desired proportion of the addresses in S. The

result is that a memory location is activated by a read or write

address if, among the location's selected coordinates, at least a

certain number of the corresponding components of the address

vector match the assigned values. If q = n, we have Kanerva's

design, and if q is small and a memory location is activated

only if the address bits match the assigned values for all of the

selected coordinates, we have the selected-coordinate design.

The performance of the various designs may be studied by

computing the expected number of hard locations in the access

overlap, that is, the set of memory locations activated by both

of two addresses. The size of the access overlap is a function

of the Hamming distance between the two addresses. I will show

how to compute this quantity for the intermediate designs.

It is also possible to construct a hybrid desig,, in which

each memory location may have a different value of q and a

different radius. The proportion of addresses that would

activate a memory location need not be the same for all

locations.

I will also show how the various hardware embodiments for

the selected-coordinate design, described in Jaeckel (1989), can

be modified for these intermediate and hybrid designs.

In some applications, the read and write addresses that we



will actually encounter may not be distributed uniformly

throughout S. For example, the bits in the addresses used might

be mostly O's, together with a small percentage of l's; that is,

the addresses might lie on or near a hyperplane in S. I will

describe a design, called the hyperplane design, that is adapted

to this situation. In this design, a memory location is defined

by three (or some other number of) selected coordinates, and it

is activated by an address if the components of the address

vector are l's for all of the location's selected coordinates. I

then show how the hardware embodiments for the selected-

coordinate design can be modified -- and simplified B for the

hyperplane design.

This design is then compared with a modification of

Kanerva's design. In this adapted Kanerva design, the addresses

of the hard locations are chosen from the same subset of S that

contains the addresses to be encountered D in this case a

hyperplane in S. We can compare the two designs by computing

the size of the access overlap for each. As in Jaeckel (1989),

we can then compute estimates of comparative memory capacities

for these two designs.

We can also define intermediate and hybrid hyperplane

designs, analogous to those mentioned above. The hardware

embodiments can be further modified for these designs. I will

also show that the adapted Kanerva design above is the same as

one of these intermediate designs.

Finally, I discuss in more general terms the possibility

that the addresses that we will actually encounter in a



particular application will not be distributed uniformly

throughout S -- for example, the hyperplane situation above.

Keeler (1988) has suggested modifying Kanerva's design by

choosing the addresses of the hard locations at random from the

same frequency distribution that the read and write addresses are

expected to follow. I will discuss some modifications that can

be made in the various other designs. It may be possible to

choose the information defining the hard locations in a way that

is better adapted to the actual distribution of the addresses.

No changes in the hardware embodiments are required, since they

may be used with any choice of hard locations.

The designs and hardware embodiments in this report and in

Jaeckel (1989) are the subject of a patent application and a

continuation of that application, filed in 1988 and 1989. The

descriptions of the designs and hardware embodiments in this

report are based on material in those documents.

To make the exposition more concrete, I will generally

assume, as in Jaeckel (1989), that n, the length of the address

vectors, is 1000, that one million hard locations are

implemented, and that about

given read or write address.

varied.

1/1000 of them are activated by a

These numbers could of course be

INTERMEDIATE AND tlYBRID DESIGNS

Although the rule for activating memory locations in the

selected-coordinate design is very different from the activation
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rule in Kanerva's design, if we view these designs geometrically,

we can see that they are related. In Kanerva's design the set of

read or write addresses that would activate a memorylocation is

a sphere in S centered at the address of the memorylocation.

In the selected-coordinate design, a memorylocation is activated

by an address if, for all of the location's selected coordinates,

the corresponding bits in the address vector match the respective

assigned values. In that case (assuming n = 1000 and ten

selected coordinates for each memory location), the subset of S

representing a memory location, that is, the set of read or write

addresses that would activate it, is actually a sphere, whose

center is a point in Z, the lO00-dimensional vector space in

which S, the address space of binary vectors, is embedded.

The center of this sphere is a vector in _ whose

components agree with the assigned values for each of the ten

1
selected coordinates defining the subset, and have the value

for each of the other 990 coordinates. The radius of the sphere

is 495, where distances are measured using L1 distance. (Since

the L1 distance between any two points in S is the same as the

Hamming distance, it will be convenient to use L1 distance here.)

Any point in S (a vector of O's and l's) is at least 990.½

495 away from this center point, due to the 990 coordinates for

component of the center vector is ½. Therefore, thosewhich the

points in S that agree with the center point on all ten

selected coordinates are exactly 495 away, and all other points

in S are more than 495 from the center. Thus the subsets

representing memory locations may be thought of as spheres.



Viewing the two designs in this way, we can see that there

is a series of possible intermediate designs with Kanerva's

design at one end and the selected-coordinate design at the

other. For any fixed q < n (n is assumed to be 1000), I will

define an n-dimensional vector in E to be the center of a

sphere in S by selecting q coordinates, assigning values of 0

or 1 to each selected coordinate, and letting all of the other

of the vector have the value ½components (to represent

indifference to whether the value of a bit in an address vector

is 0 or 1). I will then choose the radius of the sphere so that

the sphere contains a given proportion of the points in S, say,

about 1/1000 of them. The radius of the sphere, using L1

distance, is R = (1000 q).½ + r, where the first term is to

account for the 1000 - q coordinates for which the center

½, and the second term, r, is chosen sovector has the value

that in the q-dimensional subspace of S generated by the q

selected coordinates, which I will call T, about 1/1000 of the

points are within r of the q-dimensional vector defined by the

assigned values for the selected coordinates. The sphere in S

with the above center and radius R consists of those points in

S for which the q-dimensional Ha_ming distance between the q

assigned values and the corresponding q components of the point

is less than or equal to r; the values of the bits for the other

coordinates are free to be either 0 or 1. In other words, if we

project S into T, a point in S is within R of the center

of the sphere in S if and only if its projection in T is

within r of the vector of assigned values. Since 1/1000 of
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the points in T are within r of that vector, and since each

point in T represents the same number of points in S as does

every other point in T, it follows that the sphere in S

contains about 1/1000 of the points in S.

For example, if q = 100, the radius of the sphere would be

900.½ + 34 = 484, since in a lO0-dimensional binary vector space

a sphere of radius 34 contains about 1/1000 of that space.

(See Kanerva, 1988.)

The numbers used above are examples; the address space could

have any dimension n, and the volumes of the spheres could be

any desired proportion of the space, or at least any proportion

for which there are spheres of that volume. Since S is

discrete, there are only a finite number of possible values for

r, so we may have to approximate the desired volume of the

spheres. (If q is small, there are fev choices for r.)

The intermediate design for a given q and a given r is

defined by considering all of the spheres of the kind described

above, for those given values. That is, all of the spheres have

the same radius R, and the center of each sphere is defined as

above, based on its q selected coordinates and the

corresponding assigned values. Each such sphere in S

represents a potential memory location, in the sense that the

points in the sphere constitute the set of addresses that would

activate the location. In other words, a read or write address

activates a memory location if, among the location's selected

coordinates, at most r of the corresponding components of the

address vector do not match the assigned values. This is



equivalent to activating the location if for at least q - r of

the selected coordinates, the components of the address vector do

match the assigned values. The hard locations would then be

chosen at random from the set of all potential memory locations.

The number of such spheres, that is, the number of potential

memory locations, is

where the first term is the number of ways of choosing q

selected coordinates and the second term is the number of ways of

choosing q assigned values. If q = n, we have Kanerva's

design, and if q is small and r = O, we have the selected-

coordinate design. (It is the condition r = 0 that

characterizes the selected-coordinate design.)

Suppose we have chosen a value of q, and also a value of r

so that each of the spheres representing the potential memory

locations contains about 1/1000 of S. Then, for a given

address x, that is, a point in S, the class of potential memory

locations activated by it is the class of spheres containing it.

I will show that this class consists of about 1/1000 of the

total number of potential memory locations. For any given set of

q selected coordinates, let A be the q-dimensional binary

vector space of all possible sets of assigned values for those

selected coordinates. Let x I be the vector in A defined by

the q components of x corresponding to the selected

coordinates. Consider the sphere in A with center x' and

radius r. Because of the way r was chosen, this sphere
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contains about 1/1000 of the points in A; that is, 1/1000 of

the possible vectors of assigned values are within r of x'

Each vector in this sphere in h defines a potential memory

location that is activated by x. Therefore, since this argument

applies to any choice of selected coordinates, about 1/1000 of

the potential memory locations are activated by x. The fact

that the proportion of memory locations activated by an address

is the same as the proportion of addresses that would activate a

memory location can also be seen from the general result derived

in Jaeckel (1989), p. 18. Thus, since the hard locations are

chosen at random, a point in S, acting as an address, will

activate about 1/1000 of the hard locations, more or less. The

actual number will be different for different addresses.

8ne way to construct an embodiment of an intermediate design

is to have an address decoder for each hard location, similar to

those described in Jaeckel (1989), p. 7-8 for Kanerva's design.

In the intermediate design, an address decoder for a hard

location would have q inputs for the q selected coordinates

defining that hard location. The assigned values and the radius

r would be stored in the address decoder. Given a read or write

address, it would compute the q-dimensional na_ming distance

between the assigned values for those q coordinates and the

corresponding components of the address vector. In other words,

it would count the number of selected coordinates for which the

component of the address vector does not match the assigned

value. If that distance is less than or equal to r, the radius

of a q-dimensional sphere containing 1/1000 of the
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q-dimensional subspace T, the location would be activated. For

example, if q = 100, the location would be activated if the

q-dimensional distance is less than or equal to 34. The

components of the address vector for the other coordinates are

not used in determining whether to activate the location.

Given two addresses x and y in S with Hamming distance

d(x,y) = d between them, we need to know the size of the access

overlap, that is, the number of potential memory locations that

are activated by both points. Since the hard locations are a

random sample of the potential memory locations, the expected

number of hard locations in the access overlap will be

proportional to this number. As in Kanerva (1988) and Jaeckel

(1989), the performance of the system may be judged by the size

of the access overlap as a function of d(x,y). Select a set of

coordinates. This maybedone in [10_0} ways. Let k beq

the number of the q selected coordinates that are among the

coordinates on which x and y differ. Since the components of

x and y differ on d coordinates and agree on 1000 - d

coordinates, the number of ways of selecting q coordinates so

that k has a given value is

The first term is the number of ways of choosing k coordinates

from among d, and the second is the number of ways of choosing

the others.

For a given set of q selected coordinates, let h be the

space of all possible vectors of assigned values as above, and
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let x' and y' be the q-dimensional vectors in A defined by

the components of x and y, respectively, corresponding to the

selected coordinates. The q-dimensional Hamming distance between

x' and y' is k, the quantity defined above. Among the

potential memory locations defined by the points in A (for the

given set of selected coordinates), the number that are activated

by both x and y is the number of points in A that are

within r of both x' and y'. This number is the volume of

(the number of points in) the intersection of the two

q-dimensional spheres of radius r whose centers are x' and

y'. Let V(q,r,k) be the volume of this intersection, where k

= d(x',y'). A formula for this volume is derived in Kanerva

(1988). The total number of potential memory locations activated

and y, for all sets of q selected coordinates, is

Z
k

If q and d are large, this sum may be approximated as

follous: If ue think of the q coordinates as being selected at

random, then k is a random variable with a hypergeometric

distribution, and the expected value of k is qd/lO00. For

large q and d, k uill be near its expected value uith high

probability; therefore, a rough approximation to the sum above is

If we express this number as a fraction of the number of

locations activated by x, which is 1/1000 of the total number

by both x

therefore
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of potential memory locations, we have

 ooov(,
2q

Approximate values of this fraction for various values of d may

be found in the middle column of Table 1.3 of Kanerva (1988), p.

24, which corresponds to spheres whose volume is 1/1000 of the

space. Since the rows in that table are labeled by the distance

relative to the dimension of the space, the row corresponding to

a given value of d is the one labeled with the value of

a÷ q = I"N_" This is the same row in the table that we would

use to find the access overlap in Kanerva's design for n = 1000

and a given d. Thus we can see from the table that for large q

and d the performance of the intermediate design is close to

that of Kanerva's design, in the sense that if two addresses are

a distance d apart, then the relative number of locations

activated by both points is similar in the two designs.

These intermediate designs can be constructed by modifying

the various hardware embodiments described in Jaeckel (1989) for

the selected-coordinate design. As mentioned above, each hard

location could have an address decoder with q inputs, which

would compute a q-dimensional Hamming distance, that is, the

number of selected coordinates for which the assigned value

disagrees with the corresponding component of the address vector,

and activate the location if this number is less than or equal to

r. Alternatively, the address decoder could count the number of

matches between the assigned values and the corresponding
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components of the address vector, and activate the location if

this number is greater than or equal to q - r. Note that since

the complexity of these address decoders depends only on q, they

can be fairly simple devices even if n, the dimension of the

address space, is very large.

For the first embodiment of the selected-coordinate design,

described in Jaeckel (1989), p. 35, we can modify the address

module as follows: The two parts of the hard-address unit would

remain the same; two 256-bit data words for each hard location,

containing the assigned-value and selected-coordinate information

in the same format as before, would be stored there. The logic

unit would be somewhat more complex. As before, it would perform

an exclusive-or (XflR) of the reference (read or write) address

and the word containing the assigned values, and then perform a

logical AND of the result of the XOR and the word containing the

selected coordinates. Among the resulting 256 bits, there would

be l's for those selected coordinates for which the assigned-

value bit disagrees with the corresponding reference-address bit;

all of the other bits would be O's. But instead of simply

testing these bits for O's, the logic unit would add them and

compare the sum to r; if the sum is less than or equal to r,

the hard location would be activated. The logic unit would thus

require a means to add the bits. The Stanford prototype (Flynn

et al., 1988), a small-scale embodiment of Kanervals design,

includes a set of adders to compute such a sum quickly; similar

circuitry could be used here. Alternatively, the logic unit

could count the number of matches between these bits and activate



15

the location if that number is greater than or equal to q - r.

In that case, the bits to be added would have to be such that

there is a 1 for each selected coordinate for which the

corresponding bits match. This could be done either by storing

the complementsof the assigned values in the hard-address unit,

or by having an element that computesthe complementof the XDR,

instead of the XOR.

The address module of the second embodiment (Jaeckel, 1989,

p. 38) can be modified as follows: The hard-address unit would

store the selected-coordinate and assigned-value information as

before, using two bytes for each selected coordinate for each

hard location. It would thus require 2q bytes of memory for

each hard location, instead of 20. For each selected coordinate,

the logic unit would compare the assigned-value bit to the

corresponding bit of the reference address, as before. But

instead of activating a memory location only if all of the bits

match, it would, for each hard location, count the number of

selected coordinates for which the assigned-value bit disagrees

with the corresponding reference-address bit. If this number is

less than or equal to r, the hard location would be activated.

Or, as above, the logic unit could count the number of matches

and activate the hard location if this number is greater than or

equal to q - r.

Finally, we could have a hybrid design, in which different

hard locations could have different values of q and r, that

is, different numbers of selected coordinates and different

radii. The Hamming radius r for each hard location would
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depend on the value of q for that location, and also on the

desired number of the addresses in S that would activate the

location. This number of addresses need not be the same for all

hard locations; we may want some locations to be activated by

more addresses and others by fewer addresses. Such a design

would combine the characteristics of the various intermediate

designs. The value of q for some of the hard locations could

be equal to n; if q = n for all of the hard locations and if

they all have the same value of r, the design would be the same

as Kanerva's design. To compute the expected number of hard

locations in the access overlap for two addresses, we would use

the formulas above to find the expected number for each

combination of values of q and r used in the design, and then

take the sum over all of these combinations of q and r.

This hybrid design is the most general of the designs

described in this report. It includes as special cases Kanerva's

design, the selected-coordinate design, the intermediate designs,

and all of the various hyperplane designs in the following

sections.

The modified hardware embodiments described above could be

further modified to allow for the possibility of different values

of q and r for different hard locations. For example, if

each hard location has an address decoder, each address decoder

could have its own values for q and r. In the first

embodiment of the intermediate design, described above, the

address module would have to store the value of r (or q - r)

for each hard location. In the second embodiment of the
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intermediate design above, the address module would have to store

the value of q for each hard location so that the logic unit

would know how many selected coordinates to check. It would also

have to store the value of r (or q - r) for each hard

location. (If for all q, all of the hard locations with a given

value of q are to have the same value of r, then in either

embodiment we could store q for each hard location and also

store a table containing the value of r (or q - r) for each

value of q.)

THE HYPERPLANEDESIGN

Suppose that in a particular application, all of the binary

vectors actually used as read or write addresses are such that

only a small proportion of their bits, say approximately 10_, are

l's and the rest are O's. This situation is somewhat analogous

to a model of a neural network in which there are, say, 1000

input neurons, about IOZ of which are firing at any one time.

Thus, an input vector would be a point in S, with a value of 1

for a coordinate meaning that the corresponding excitatory input

neuron is firing, and a value of 0 meaning that it is not firing.

The proportion of input neurons firing at any one time might be

held to about 10_ by the action of inhibitory neurons. Two input

vectors would be considered similar to each other if many of the

neurons represented as firing by one vector were also shown as

firing by the other, that is, if their logical AND contained many

l's. This concept of the input to a neural network, and the
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hyperplane design described below, bear some resemblance to

Marr's (1969) model of the cerebellum.

The set of binary vectors in S that contain a fixed number

of l's among their components (e.g., 100 out of 1000) forms a

hyperplane in S. Thus, the addresses we expect to encounter in

this situation lie on or near a hyperplane in S, rather than

being distributed throughout S, as was assumed for the previous

designs. Although I will sometimes assume for simplicity that

the addresses are restricted to a hyperplane, the results below

that are based on this assumption will be approximately true if

all of the addresses are at least near a given hyperplane. The

general situation in which the addresses are not distributed

uniformly in S will be discussed in a later section.

The hyperpla_e desig_ is a design for a Sparse Distributed

Memory that is adapted to this situation. To describe the

design, I will designate a collection of subsets of S to

represent potential memory locations; that is, each of these

subsets is the set of read or write addresses that would activate

a potential memory location. I will assume that n = 1000, that

about 10_ of the bits in each address are l's, that one million

of the potential memory locations, chosen at random, are

implemented as hard locations, and that each memory location is

to be activated by about 1/1000 of the addresses. As with the

previous designs, these numbers could be varied.

In the next section I will describe an adaptation of

Kanerva's design to this situation, and I will compare it to the

hyperplane design by computing, for each design, the size of the
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access overlap for two addresses.

I will define a subset of S by selecting three of the 1000

coordinates. The subset consists of all points in S that have

the value 1 for all three of the selected coordinates, and any

values for the other coordinates. The memory location

represented by such a subset is activated by any address vector

whose components for all three of the location's selected

coordinates are 1. (This is somewhat analogous to an associative

memory in which all of the stored patterns containing a given

three items are recalled whenever the stimulus contains those

three items.) The number of subsets of this type is

{10_01 = 166,167,000

A random sample of the potential memory locations would be

implemented as hard locations. These subsets are like the

spherical subsets in the selected-coordinate design, except that

there are only three selected coordinates for each subset, and

the assigned values for the selected coordinates are always 1.

For any binary vector x in S, let h(x) be the number of

1's in x. Let C be the set of all points in S with h(x) =

100. C is a hyperplane in S, consisting of all 1000-

dimensional binary vectors containing 100 1's and 900 O's. The

fl0OOl
total number of points in C is [ 100)" If we assume that all

of the read and write addresses must lie in C, then it is easy

to compute the proportion of the addresses that would activate a

memory location. If a vector in C lies in a given subset of

the kind described above, then its components for the three
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selected coordinates defining the subset are 1, and it contains

97 other l's distributed among the remaining 997 coordinates.

Since the number of ways of placing 97 l's among those 997

coordinates is {9_}, this is the number of points in C that

lie in the subset. Therefore, the proportion of the addresses in

C that would activate the memory location is .000973, or just

under 1/1000.

Note that I am using three selected coordinates here because

I assumed that about IOZ of the bits in the address vectors are

l's, and that a location is to be activated by about 1/1000 of

the addresses. If these numbers are changed, I would use a

different number of selected coordinates to define a memory

location.

For any x in S, the number of potential memory locations

activated by x, that is, the number of subsets it belongs to, is

since this is the number of ways of choosing three coordinates

for which the components of x are all 1. If x is in C, that

is, if h(x) = 100, this number is .000973 of the total number of

potential memory locations. This is exactly the same as the

proportion found above. As with the intermediate designs, the

equality of these proportions can also be seen from the general

result in Jaeckel (1989), p.18. If we assume that there are one

million hard locations chosen at random, then the expected number

of hard locations activated by an address x in C is
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1 {1 o}973
,000.000

We do not have to restrict the addresses to a single

hyperplane; instead, we could require only that all of the

addresses lie within a certain distance of C. Then, if h(x) >

100, the proportion of memory locations activated by x would be

greater than the amount found above, and if h(x) < 100, the

proportion would be less. In this case the design would differ

from the other designs considered so far, in that the number of

potential memory locations activated by an address would not be

the same for all addresses. But even in this case the general

result in Jaeckel (1989), p. 18, shows that the proportion of the

memory locations activated by a "typical" address is the same as

the proportion of the addresses that would activate a "typical"

memory location.

We will see that in this design the size of the access

overlap for two address vectors depends on the number of l's in

the logical AND of the two vectors, so I will use that as a

measure of their similarity, rather than using the Hamming

distance. I will begin by showing how the two are related.

For any two points x and y in S, let A(x,y) be the

number of l's in the logical AND of x and y, that is, the

number of coordinates for which both x and y are 1. Since

the Hamming distance d(x,y) is the sum of the number of

coordinates for which x is 1 and y is O, of which there are

h(x) - A(x,y), plus the number for which y is 1 and x is O,

of which there are h(y) - A(x,y), we have:
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Therefore,

If h(x) and

or

d(x,y) = [h(x) -h(x,y)] + [h(y) -A(x,y)]

= h(x) + h(y) - 2.h(x,y)

h(x,y) : ½. [h(x) + h(y) - d(x,y)]

h(y) are both approximately 100, then

A(x,y) z 100 -_ ,

d(x,y) _ 200- 2.A(x,y)

If both x and y are in C, these equations are exact. Thus,

for the points in S with which we are concerned, h and d

are closely related, and I will use h as a measure of

similarity instead of d.

I will now show that for two given points in S, such as a

write address x and a read address y, the number of potential

memory locations activated by both of them is a function of

h(x,y). A memory location is activated by both x and y if

the components of both vectors are 1 for all three of the

selected coordinates defining that memory location. Since

h(x,y) is the number of coordinates for which both x and y

are 1, the number of ways of choosing three coordinates for which

both are 1 is

Hence this is the number of potential memory locations activated

by both x and y, that is, the size of the access overlap. If

there are one million hard locations chosen at random, the
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expected number of hard locations activated by both

is

x and y

000.000

The third column in Table 1 in the next section gives this

expected number for several values of A(x,y). Note that x and

y here may be any points in S.

The various hardware embodiments described in Jaeckel (1989)

for the selected-coordinate design can easily be adapted to the

hyperplane design. Since the hyperplane design is like the

selected-coordinate design, except that each memory location is

defined by three (or some other number of) selected coordinates

and the assigned values are always 1, any embodiment for the

selected-coordinate design can be used for the hyperplane design

without modification, as long as it can function with hard

locations defined by the required number of selected coordinates.

Moreover, if we are interested only in the hyperplane design,

those embodiments can be simplified, because they would not have

to store assigned values or perform an exclusive-or. For

example, if we have an address decoder for each hard location,

each address decoder would have one input for each selected

coordinate, to receive the corresponding bit in the read or write

address; it would perform a logical AND of those bits, and

activate the location if all of them are l's. As in the earlier

designs, these address decoders would be simple devices even if

n is very large.

We can modify the first embodiment of the selected-
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coordinate design (Jaeckel, 1989, p. 35), by omitting the

assigned-value part of the hard-address unit and the XOR part of

the logic unit. Since we can think of the hyperplane design as

having all assigned values equal to 1, we do not need to store

them. Since the exclusive-or of the reference (read or write)

address with a vector of l's is the complement of the reference

address, one way to implement the design is to take the

complement of the reference address at the beginning of a read or

a write operation and hold that vector in thereference-address

register. Then we can proceed as in the embodiment for the

selected-coordinate design: For each hard location, the logic

unit would perform a logical AND of the complemented reference

address with the 256-bit mask from the hard-address unit (a

vector containing l's at the positions of the selected

coordinates and O's for the other coordinates). If all 256 of

the resulting bits are O's, the hard location is to be activated.

An alternative implementation is this: Instead of complementing

the reference address, the complements of the selected coordinate

masks (that is, O's for the selected coordinates and l's for the

others) could be stored in the hard-address unit. Then, for each

hard location, the logic unit would perform a logical OR of the

reference address with the complemented mask; if all of the 256

resulting bits are l's, the location is to be activated.

The second embodiment of the selected-coordinate design

(Jaeckel, 1989, p. 38) can be simplified as follows: If we use

two bytes to store the number of each selected coordinate, the

selected-coordinate information for each hard location can be
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stored in six bytes in the hard-address unit (assuming three

selected coordinates per hard location). Since we do not need to

store assigned values, we can use addresses consisting of as many

as 216 = 65,536 bits. The operation of the logic unit would be

like that for the selected-coordinate design, except that it

would not have to separate the assigned value from the number of

the selected coordinate, and it would compare bits in the

reference address to 1, rather than to an assigned value.

COMPARISONOF DESIGNS

In this section I will compare the hyperplane design to an

adaptation of Kanerva's design to the hyperplane case.

In the situation where h(x) is approximately 100 for all

possible addresses, neither Kanerva's design nor the selected-

coordinate design, as they are described in Jaeckel (1989), would

perform well. This is because A(x,y) for two such addresses

chosen at random would be about 10 (see below), uhich corresponds

to a Hamming distance of about 180. (The maximum Hamming

distance between two such addresses is about 200.) For Kanerva's

design, using the parameters used in Jaeckel (1989), the expected

number of hard locations in the access overlap if d(x,y) = 180

is 119 (Kanerva, 1988, Table 7.1, p. 63), and for the selected-

coordinate design it is 133 (by the formula in Jaeckel, 1989, p.

20). In either case, this number is more than one tenth of the

number of hard locations activated by a single address. The

result is a poor signal-to-noise ratio: If all of the addresses
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are on or near the hyperplane C, and if we try to recover a data

word written at address x by reading from the memory at that

same address, and if we assume that the other write addresses are

randomly distributed on or near C, then the vector of sums

computed during the read operation uill contain about 1000 copies

of the data word to be recovered, along with over 100 copies of

each of many other stored words, whose write addresses would be

at a distance of about 180 from the read address, fin the other

hand, if the addresses are distributed uniformly throughout S,

in which case the expected distance between two random addresses

is 500, then, in either of these designs, the vector of sums

would contain, on the average, only one copy of each of the other

stored data words. See Table 1 of Jaeckel (1989), p. 22.

Consequently, in the present situation, the "noise" produced by

even a modest number of stored data words could overwhelm the

data word to be recovered. If we read at an address near, but

different from, the write address x, the problem is even worse,

because the sums would contain fewer copies of the data word to

be recovered.

In principle, the signal-to-noise ratio in Kanerva's design

could be improved by decreasing the activation radius of the hard

locations. (The equivalent to this in the selected-coordinate

design would be to increase the number of selected coordinates

defining each hard location.) But since the hard locations are

chosen at random, the effect of this -- unless we increase the

total number of hard locations --would be to greatly reduce the

expected number of hard locations activated by a single address.
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Becauseof the randomchoice of hard locations, it would be

difficult to recover the stored data reliably if each data word

is written to only a small numberof memorylocations.

In order to have a design like Kanerva's to compareto the

hyperplane design, I will describe an adaptation of Kanerva's

design to the situation here. (The hyperplane design maybe

thought of as an adaptation of the selected-coordinate design to

this situation.) Oneway to modify Kanerva's design to adapt it

to this situation is to restrict the addresses of the hard

locations to the part of the address space that contains the read

and write addresses that we uill actually encounter, as has been

suggested by Keeler (1988), p. 321-24. Since more of the hard

locations will then be relatively close to the read and write

addresses actually used, the activation radius can be reduced,

and the memory should be better able to discriminate between

addresses that are near each other. The activation radius and

the size of the access overlap will depend on the distribution of

the addresses of the hard locations.

I will define the adapted Kanerva design as follows: As

before, C is the hyperplane consisting of all points in S

[loool
with h(x) = 100. The number of points in C is [ 100)" I

will assume for simplicity that all of the read and write

addresses to be used lie in C, and that they are distributed

uniformly in C.

The set C is also used as the set of addresses of

potential memory locations in this design, h random sample of

these points will be chosen to be the addresses of the hard
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locations. A memory location at z in C is activated by any

read or write address within a given Hamming distance D of z;

that is, the subset of addresses in C that represents the

memory location is a sphere with radius D centered at z.

Conversely, the set of addresses of potential memory locations

activated by a read or write address x in C is a sphere with

radius D centered at x. Therefore, the number of addresses

that activate a given memory location is the same as the number

of potential memory locations that are activated by a given

address. D is chosen so that these spheres will contain a

desired number of points. I will show how to compute volumes of

spheres and intersections of spheres in C, so that we can

compute the size of the access overlap for this design. We can

then compare the memory capacity of this adapted Kanerva design

to that of the hyperplane design.

Choose a point x in C to be the center of a sphere in

C. A sphere centered at x is the set of points within a given

distance D of x, that is, the set of all z in C such that

d(x,z) < D. (Since the Hamming distance between any two points

in C is even, we may assume that D is even.) Since A(x,z) =

100 - d(x,z)/2, we can describe the sphere as the set of all z

such that A(x,z) > A, where A = 100 - D/2. For any a > A, the

number of points z in C for which A(x,z) = a is

rtlo0- J ,

where the first term is the number of ways of placing a l's

among the 100 coordinates for which the component of x is a 1,
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and the second term is the number of ways of placing 100 - a

l's among the 900 coordinates for which the component of x is a

O. The number of points in the sphere is therefore

{1 0}r(1oo-a)
a_h

If h = 20 (or D = 160), the volume of the sphere is

.001070 of C; that is, the sphere contains about 1/1000 of the

points in C. Thus, if there are one million hard locations with

addresses chosen at random in C, and if a read or write address

x in C activates all hard locations whose address z is such

that A(x,z) > 20, then, on the average, an address in C will

activate about 1070 hard locations. To compare the designs, I

will use the value A = 20 to define the activation threshold,

that is, the size of the spheres, for the memory locations in the

adapted Kanerva design. I use this value so that, for this

design and for the hyperplane design, a similar number of hard

locations would be activated by an address in C.

Given two read or write addresses x and y in C, with

A(x,y) = U, I will compute the number of potential memory

locations activated by both addresses. That is, I will find the

number of points z in C such that both h(x,z) > 20 and

A(y,z) > 20. For convenience, we can rearrange the order of the

coordinates so that for the first U coordinates, the components

of both x and y are l's; for the next 100 - U coordinates,

x is 1 but y is O; for the 100 - U coordinates following

those, x is 0 and y is 1; and for the remaining 800 + U

coordinates, both x and y are O. The vectors would then look
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like this:

X"

y:

U 100 - U 100 - U 800 + U

11...11 11 ..... 11 O0 ..... O0 O0 ........... O0

11...11 O0 ..... O0 11 ..... 11 O0 ........... O0

a 7 5

The number of ways of choosing a point z in C with a l's in

the first block of coordinates, _ in the second, 7 in the

third, and 5 in the fourth, where a + B + 7 + 5 = 100, is

{a_'{lO_-_'{lO_-_'(80_+_ ,

where the first term is the number of ways of placing a l's

among U coordinates, and so on. The number of points in the

access overlap, that is, in the intersection of the spheres about

x and y, is found by summing this expression over all

permissible combinations of values for a, 9, 7, and 5 for

which

A(x,z) = 20

and

h(y,z) = a + 7 _ 20

Thus the size of the access overlap is a function of

h(x,y). If there are one million hard locations, then the

expected number of hard locations in the access overlap is found

by multiplying the number of points in the intersection by

1_000.000
[10001
I loo)

Some representative values are given in the fourth column of

Table 1 below.
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The second column in the table gives the Hamming distance

d(x,y) corresponding to each value of h(x,y), assuming that x

and y are in C. The third column gives the expected numbers

for the hyperplane design; these numbers are valid for the given

values of h(x,y) whether or not x and y are in C. In the

fourth column, however, x and y are assumed to be in C.

TABLE 1

Expected number of hard locations activated by both x and :_

_ HvDerDlane des_j_ Adapted Kanerva

100 0 973 1070

90 20 707 486

80 40 494 284

60 80 206 95

40 120 59 25

20 160 6.9 3.9

10 180 0.72 1.06

0 200 0 0.17

In Jaeckel (1989) some estimates of comparative memory

capacities and signal-to-noise ratios were computed for Kanerva's

design and the selected-coordinate design, under some assumptions

as to the randomness of the data words written to the memory. If

the same assumptions are made here, with respect to the

hyperplane design and the adapted Kanerva design, then the

formulas derived in that report can be applied to the two designs

here, and we can compute similar estimates for these designs. I
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will assumefor this comparison that for both designs, all

addresses lie in C.

First I will showthat if two addresses x and y are

chosen at random in C, then the expected value of A(x,y) is

10. For each of the 1000 coordinates, there is a 1/10 chance

that the component of x is 1, and, independently, a 1/10

chance that the component of y is 1. Therefore, the

probability that both are 1 is 1/100. So the expected number of

coordinates for which both are 1 is 1/100 of 1000, which is 10.

In the notation of Jaeckel (1989), t is the number of data

words written to the memory, the x i are the write addresses for

those data words, x 1 is the write address of the data word to

be recovered by reading from the memory, y is the read address,

and _1 is the expected number of hard locations in the access

overlap of x 1 and y. I assume that y is near Xl, and that

for the other write addresses, A(xi,Y ) is near 10. Using the

variance formulas derived in Jaeckel (1989), p. 29, and the

values given in Table 1 above for A(x,y) = 10, we find that the

approximate variance of the noise for the hyperplane design is

/1,h + 1.24(t - 1) ,

and for the adapted Kanerva design it is

]l,a + 2.1S(t - 1) ,

where the subscripts h and a denote the two designs here.

We can now estimate comparative memory capacities for the

two designs. One way to do this is to compute, for a given value

of A(xl,Y), the maximum number of data words that can be stored

in the memory, for which there is at least a 99% chance of
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correctly recovering a given stored data bit. For example, using

the method given in Jaeckel (1989), p. 30-31, it can be shown

that if A(Xl,Y ) = 80, then the maximum number for the hyperplane

design is about 35,854 stored data words, while for the adapted

Kanerva design the maximum is about 6,686. That is, under these

conditions, more than five times as many data words can be stored

in the hyperplane design, compared to the adapted Kanerva design,

with the same probability of recovering a stored data bit.

INTERMEDIATE AND HYBRID HYPERPLANE DESIGNS

We saw earlier that there is a series of intermediate

designs between Kanerva's design and the selected-coordinate

design. Similarly, in the present situation, where I assume that

the addresses are restricted to the set C, we can describe a

series of intermediate designs related to the hyperplane design

and the adapted Kanerva design. For any fixed q and threshold

value A, we can define a collection of subsets of C to

represent the potential memory locations for an intermediate

hyperplane design as follows: Define a subset by choosing q

selected coordinates; the subset consists of all points in C

that have the value 1 for at least h of the selected

coordinates, and any values for the other coordinates. The

number A is chosen so that the subset will contain a desired

proportion of the points in C. (As in the other designs, not

all proportions are possible, due to the discreteness of the

address space, so we may have to approximate the desired
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proportion.) The memorylocation represented by such a subset

would be activated by any address in the subset, that is,

whenever the componentsof the address vector for at least A of

the selected coordinates are l's. If we think of the selected

coordinates as having assigned values of 1, these subsets are

like the spherical subsets in the earlier intermediate designs.

Thenumber of potential memory locations is [I0_0). A random

sample of them would be implemented as hard locations.

If q = A = 3, we have the above example of the hyperplane

design. And if we view the adapted Kanerva design above somewhat

differently, we can see that the adapted Kanerva design is the

same as the intermediate hyperplane design with q = 100 and A

= 20. That is, the subsets representing its potential memory

locations fit the description given above, for these values of q

and A. Any z in C is the address of a potential memory

location in the adapted Kanerva design; the location is activated

by any address x in C for which A(x,z) > 20. Given a memory

location with address z, the corresponding subset in the

intermediate hyperplane design is defined by choosing the 100

coordinates for which the value of z is 1 to be the 100

selected coordinates defining a subset of the kind described

above; if A = 20, that subset is the same as the set of points

that activate the location in the adapted Kanerva design whose

address is z. Conversely, any subset in the intermediate

hyperplane design with q = 100 and A = 20 corresponds to a

potential memory location in the adapted Kanerva design; the

address of that location is the vector in C whose components
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are l's for the selected coordinates and O's for the others.

Therefore, the collection of subsets representing potential

memory locations in the adapted Kanerva design is the same as the

collection of subsets above for q = 100 and A = 20.

We can therefore analyze the intermediate design

corresponding to a given q and A just as was done above for

the adapted Kanerva design. We can find the number of points in

the subsets defined above, and also the size of the access

overlap for two given addresses, by methods similar to those used

above for the adapted Kanerva design.

Note that q could be greater than 100, but in view of the

relatively poor performance of the adapted Kanerva design, as

shown in Table 1, it is unlikely that large values of q would

be useful, at least in this context.

_e could also construct hybrid hyperplane desigas, like the

hybrid designs described earlier, in which different hard

locations could have different values for q and for h. The

value of A for a hard location would depend on q and on the

desired number of addresses that would activate the location;

this number of addresses need not be the same for all locations.

Computation of the expected number of hard locations in the

access overlap for such a design would be done as before, by

combining the results for the various values of q and A used

in the design.

In an earlier section I showed how the various hardware

embodiments for the selected-coordinate design could be modified

for the intermediate and hybrid designs related to that design.
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The corresponding embodimentsfor the hyperplane design, which

are described above, can be modified in an analogous way for the

intermediate and hybrid hyperplane designs described in this

section. The embodiments for these designs would determine

whether to activate a hard location by counting the number of l's

in the bit positions in the reference address corresponding to

the selected coordinates; if that number is greater than or equal

to A, the location would be activated.

CORRELATEDADDRESSESAND CHOICE OF HARDLOCATIONS

In all of the designs considered so far, the hard locations

have been chosen at random from a set of potential memory

locations. This choice is based on the assumption that the read

and write addresses will be distributed randomly throughout S

(or, in the hyperplane case, in or near C). _owever, in some

applications the addresses that will actually be encountered will

lie in a subset of S, such as a hyperplane, or will have some

nonuniform frequency distribution over S. In such cases we

could say that the addresses are correlated. In this situation

it may be inefficient to have the hard locations scattered at

random, without regard to the nature of the addresses to be

encountered. Some hard locations might be activated very often,

while others are rarely activated. The data stored in them might

be redundant or uninformative. Moreover, if the addresses

encountered tend to be bunched in certain regions in S, such as

in the hyperplane C, then the average distance between two such
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addresses may be much less than n/2, the average distance if the

addresses are random. Consequently, as in the hyperplane case,

the "noise" due to data words stored at other addresses might

make it difficult to recover a desired data word.

I assume that each data word is written to the memory once,

as in Kanerva's original design; that is, I assume that no

"retraining" is done to reduce the noise caused by interference

among the stored data words. In any of the designs it should be

possible to improve the response of the memory, after data have

been stored in it, by testing the memory and then altering the

stored data so that when the memory is read from at certain

addresses, the response will be closer to the desired response.

If this is done, the assumptions of randomness that underlie the

memory capacity and signal-to-noise ratio computations in Jaeckel

(1989) would not apply.

A modification of Kanerva's design to fit this situation has

been suggested by Keeler (1988), p. 321-24. Be suggests that if

the read and write addresses are expected to follow a known

nonuniform frequency distribution, then the addresses of the hard

locations should be chosen at random based on the same frequency

distribution. If the frequency distribution is not known, it may

be possible to estimate it. The hard locations would then have a

higher density in the regions of S where more of the read and

write addresses will lie. The activation radius would have to be

adjusted so that a desired proportion of the hard locations would

be activated by an address. Because of the higher density of

hard locations near the read and write addresses, the radius can
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be reduced without resulting in too few locations being activated

by an address. And with a smaller activation radius, the memory

can discriminate between addresses that are closer to each other.

For example, in the adapted Kanerva design above, the spheres

have a Hamming radius of 160.

A similar modification can be made in the selected-

coordinate design and in the related intermediate and hybrid

designs, if the frequency distribution of the addresses to be

encountered is known or can be estimated. One possibility is to

choose the selected coordinates for a hard location at random as

before, and then to assign values for the selected coordinates

based on the joint frequency distribution of the components of

the address vectors corresponding to those selected coordinates.

This may be derived from the distribution of the addresses, h

possible alternative is to assign combinations of values for the

selected coordinates that are less likely to occur in the

addresses, but that will occur sometimes. _ard locations

activated by such relatively unlikely patterns may be more useful

in that they may make certain regions of the address space "stand

out", so that the memory can make finer distinctions between

similar patterns. The hyperplane design above is an example of

this; although most of the bits in the addresses are O's, the

assigned values are all l's.

Instead of choosing the selected coordinates for a hard

location at random, it may be better to choose nonrandom sets of

selected coordinates, together with appropriate assigned values,

that are more useful for discriminating among the addresses to be
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encountered. For example, if the values of the bits in the

address vectors for two of the coordinates are highly correlated,

and if we use both of those coordinates as selected coordinates

for the same hard location, we should probably assign them

combinations of values that are relatively unlikely to occur.

Otherwise, using both coordinates as selected coordinates for the

same hard location would be somewhat redundant.

Thus, it may be possible to define the hard locations in a

way that is better adapted to the actual distribution of the

addresses. Moreover, the hardware embodiments described above

and in Jaeckel (1989) may be used in these cases. Since the user

can choose any desired combination of selected coordinates and

(except for the hyperplane embodiments) assigned values for any

of the hard locations, and enter that information into the

address decoders or the hard-address units, no changes in the

hardware are required.

Thanks to Pentti Kanerva and _ike Raugh for reading and

commenting on earlier drafts of these reports.
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